Multivariable Calculus

Exercises

- 1. Calculate all partial derivative of the following functions:
 - $g(x,y) = (x-y)^2$
 - $f(x,y) = \sin(\ln(x)) + xy + y^2$
- 2. Calculate the gradient of the following functions:
 - $f(x_1, x_2) = \frac{\sqrt{x_1^2 1}}{x_2^4}$ • $g(x, y, z) = (xyz - x^2 + y^2 - z^2)^2$
- 3. Given the following functions f and directions \mathbf{u} . Calculate the directional derivative at the given coordinates.
 - $f(x,y) = x^2 + \sqrt{xy}$ and $\mathbf{u} = (\frac{1}{2}, \frac{1}{2})$ at position $(\sqrt{2}, 2\sqrt{2})$
 - f(x, y, z) = x + y + z and $\mathbf{u} = (2, 0, 1)$ at position (π, π^2, π^3)
- 4. Calculate the following multiple integrals:

•
$$\int_{1}^{2} \int_{1}^{2} (x^{2} + xy^{2}) dy dx$$

•
$$\int_{0}^{\pi} \int_{-\pi/2}^{\pi/2} \int_{2}^{4} (z^{3} \sin(y) \cos(x)) dz dy dx$$

- 5. Find the stationary points of the following functions:
 - $f(x,y) = \sin(x)\sin(y)$ on the domain $[-\pi,\pi] \times [-\pi,\pi]$

•
$$f(x,y) = x^2y - xy^2 + 5$$

• $f(x, y, z) = x^2 + y^2 + z^2 - 4x + 8y - 6z + 29$ and also determine the type of the stationary point(s).