Multivariable Calculus

Exercises

1. Calculate all partial derivative of the following functions:

- $g(x, y)=(x-y)^{2}$
- $f(x, y)=\sin (\ln (x))+x y+y^{2}$

2. Calculate the gradient of the following functions:

- $f\left(x_{1}, x_{2}\right)=\frac{\sqrt{x_{1}^{2}-1}}{x_{2}^{4}}$
- $g(x, y, z)=\left(x y z-x^{2}+y^{2}-z^{2}\right)^{2}$

3. Given the following functions f and directions \mathbf{u}. Calculate the directional derivative at the given coordinates.

- $f(x, y)=x^{2}+\sqrt{x y}$ and $\mathbf{u}=\left(\frac{1}{2}, \frac{1}{2}\right)$ at position $(\sqrt{2}, 2 \sqrt{2})$
- $f(x, y, z)=x+y+z$ and $\mathbf{u}=(2,0,1)$ at position $\left(\pi, \pi^{2}, \pi^{3}\right)$

4. Calculate the following multiple integrals:

- $\int_{1}^{2} \int_{1}^{2}\left(x^{2}+x y^{2}\right) d y d x$
- $\int_{0}^{\pi} \int_{-\pi / 2}^{\pi / 2} \int_{2}^{4}\left(z^{3} \sin (y) \cos (x)\right) d z d y d x$

5. Find the stationary points of the following functions:

- $f(x, y)=\sin (x) \sin (y)$ on the domain $[-\pi, \pi] \times[-\pi, \pi]$
- $f(x, y)=x^{2} y-x y^{2}+5$
- $f(x, y, z)=x^{2}+y^{2}+z^{2}-4 x+8 y-6 z+29$ and also determine the type of the stationary point(s).

